

Agenda

- I. Project Team Introductions
- II. Project Overview & Background
- III. Project Approach
- IV. Project Schedule

TOWN OF MINA

Project Team Introductions

- Town of Mina
- Barton & Loguidice, D.P.C.
- Princeton Hydro
- Findley Lake Watershed Foundation
- Other Stake Holders

Project Background

- 2022 Non-Agricultural Nonpoint Source Planning Grants
 - I. Stormwater Retrofit Study
 - II. Culvert Assessment Report
 - III. In-Lake Waterbody Controls for Nutrients
 - I. Princeton Hydro Lake Evaluation & Recommendations
 - II. CSLAP Data

Project Goals

- Thorough evaluation of existing conditions;
- **2. Prioritize recommendations** to address water quality
 - 1. Watershed Projects
 - 2. In-Lake Controls
- **3. Position for future funding** for project implementation.

Findley Lake	Findley Lake Watersl Foundation	hed	Town of	Findley Lake	Chautauqu	a County
				Surface area	(ac/ha)	307 / 124
				Max depth (ft/m)		38/12
The state of the s	Lake Characteristics		Mean depth (ft/m)		11/3	
The second			Retention time (years)		0.5	
			Lake Classification		В	
1-07			Dam Classification		Α	
				Watershed a	rea (ac /ha)	3064 /1420
		Watershed Characteristics		Watershed / Lake ratio Lake & wetlands % Agricultural % Forest, shrub, grasses %		10
						13%
						28%
						54%
				Residential		6%
				Urban		0%
		CSLAP Participation		Years	1986-2000, 2003-2013, 2015, 2018	
The last	- V po		ation		2010, 2010	
THIE	V		ation	Volunteers	James A Lic Mulkearn	
Trophic state	HABs Susceptibil	Particip	Inv	Volunteers vasive erability	James A Lic Mulkearn	

Project Approach

- Stormwater Retrofit Study
 - I. Watershed Based
 - II. Pollutant Loading Evaluation
 - I. Stormwater Ponds/Wetlands
 - II. Green Infrastructure
 - III. Land Use Planning & Zoning
 - IV. Water Quality Improvements
 - V. Natural Resource Protection

Project Approach

- I. Stormwater Retrofit Study
 - I. Toolbox of Mitigation Options
 - II. Ranking Matrix
 - I. Cost/Benefit Analysis
 - III. Two (2) Recommended Alternatives
 - I. Conceptual Design
 - II. Future Grant Application for Implementation

PUBLIC MEETING -- MAY 11, 202

Project Approach

- I. Culvert Assessment Report
 - I. Field Inventory of culverts
 - I. Size
 - II. Material
 - III. Condition
 - II. GIS Mapping
 - III. Channel Erodibility Assessment
 - IV. Ranking of culvert rehab projects

R	arton
&	oguidice

Culvert Assessment

LOCATION	MATERIAL		SHAPE		DEMENSIONS (IN.)	SUBMERGED
	□ RCP	□ CMP	☐ Circular	☐ Single	Diameter Directsions	In Water.
	□ PVC	□ RDPF	☐ Eliptical	Dushle		Pertially
Closed Plips	☐ Skeel		☐ Rox	☐ Triple		
	Other		Other	Other:		With Scaliment: No Partially I tally
	☐ Concrete		Dr		D. A.	
	☐ Earthen		Trapcavid		Depth:	
Open draininge	□ ub-cab		Durabolic Otheri		Top Width Bottom Width	
	Other.		17061		DOMEST WIGHT	
la-Stream	(applicable to	ben collecting	emple)			
Now Present?	□ Yes	□ No	I/N	a, Ship to Section 5		
Flow Description (f present)	Trickle	☐ Moderni	c Substantial			

Section 5: Physical Indicators for Both Flowing and Non-Flowing Outfalls
Are physical indicators that are not related to flow present? Yes No

INDICATOR	CHECK If Present	DESCRIPTION	COMMENTS	
Outfall Damage		Spalling, Cracking or Chipping Pechag Paint Corrosion		
Deposits/Stains		Oily Flow Line Paint Other:		
Abnormal Vegetation		☐ Excessive ☐ Inhibited		
Poor pool quality		Odors Colors Finitables Oil Sheen Suds Excessive Algae Other:		
Pipe benthic growth		☐ Brown ☐ Orange ☐ Green ☐ Other:		

Project Approach

- In-Lake Nutrient Controls
 - I. Internal Phosphorus Loading/Oxygen Demand
 - Aeration
 - II. Hypolimnetic Withdrawal
 - III. Dredging
 - IV. Destratification

In-Lake Nutrient Controls

- I. In-Lake Nutrient Controls
 - I. Three Monitoring Events
 - I. Various Depth Intervals
 - I. Temperature
 - II. Conductance
 - III. Dissolved Oxygen
 - IV. pH
 - V. Chlorophyll
 - VI. Nutrients
 - VII. Sediments
 - VIII. plankton

PUBLIC MEETING - MAY 11, 2023

Nutrient Pollutant Loading Analysis

- Model watershed based nutrient loads (i.e. phosphorus, nitrogen and sediment)
- Evaluate existing water quality conditions
- Inform mitigation alternative ranking and selection

Development and Evaluation of Mitigation Alternatives

- Modifications to existing drainage system
- Upstream Detention
- Installation of green infrastructure stormwater retrofits
- Water quality improvements
- In-Lake Nutrient Controls

Mitigation Alternative Matrix - Prioritization

- Stormwater Benefits (total 55 out of 100 points)
- Flood reduction (45 points)
- Nutrient reduction water quality benefit (10 points)
- Constructability (total 20 out of 100 points)
 - Ownership: public or private (10 points)
 - Known constraints (5 points)
 - Permitting (5 points)
- Cost (total 20 out of 100 points)
 - Construction Cost (10 points)
 - Maintenance Cost (5 points)
 - Fundability (5 points)
- Co-Benefits (total 5 out of 100 points)
 - Energy and air quality impacts (1 point)
 - . Habitat and biodiversity (1 point)
 - Community and aesthetic benefits (1 point)
 - Human health benefits (1 point)
 - · Educational opportunities/visibility (1 point)

Project Schedule Barton & Loguidice Data Collection and Field Verification Stormwater Retrofits & Culvert Assessment June/July Princeton Hydro In-Lake Monitoring May, August, September - Boat Availability? Hydrologic and Hydraulic Modeling July/August Pollutant Loading Analyses July/August **Evaluation of Mitigation Alternatives** September-November **Draft Engineering Reports Identify Priority Projects** January 2024 Draft Report Meeting January 2024 **Final Engineering Reports** March 2024 **Final Report Meeting** March 2024

